

Mathematica File: Instructions and Explanations

This computes beliefs for up to $N=7$ states, starting in the middle ($n_0 = 4$), and then optimal cutoffs including for truncated systems $N=2$, $N=3$, $N=4$, $N=5$, and finally $N=7$ (warning: $N=7$ is slow!!). Beliefs are in terms of threshold *likelihood ratios* that you may specify, and parameters η, ξ , assuming symmetric prior $\mu = 1$. ****IMPORTANT**:** thresholds below n_0 are ordered low-high, as $P1 < P2 < P3 < 1$; and thresholds above n_0 are ordered high-low, as $p1 > p2 > p3 > 1$. You must have $P3 < 1 < p3$ if you want to start in $n_0=4$, otherwise there may be no/multiple solutions. You are welcome to collapse intervals to get a smaller system, this works for up to 3 states below initial and up to 3 above. For example for $n_0 = 2$ and $N = 5$ (one state below initial and three above), you need to specify one lower cutoff $P3 < 1$ and 3 upper cutoffs $p1 > p2 > p3 > 1$, then collapse the bottom two intervals via $P1=P2=P3$.

The optimization section uses action bias $\lambda \equiv \pi/\Pi$ and assumes (via the choice of n_0) that this is at most 1. It gets exponentially slower as the # memory states N rises, so I have explicitly programmed in smaller systems: first $N = 2$ (this is instant), then $N = 3$ (about 5 seconds), $N = 4$ (30 seconds), $N = 5$ (2 minutes), and $N = 7$ (8 minutes). I skipped $N=6$.

1 How to Use Mathematica File

I've bunched quite a few command lines together, but you still need to enter command lines at key spots. Look for large gaps where you need to hit shift+enter to execute the commands:

1. The first part of the file computes beliefs (likelihood ratios) outside $n_0 = 4$. Hit shift+enter at the end (after the documentation note following command QHavg3)
2. The next part of the file computes the belief (likelihood ratio) in initial state $n_0 = 4$, then computes the ρ^θ vectors, and finally computes the full vector $(Q_1, Q_2, \dots, Q_6, Q_7)$ of belief likelihood ratios for $N=7$ states, given your specified cutoffs and parameters η, ξ . Look for the documentation note "this calculates the full Q vector starting in 4" and hit shift+enter after this. Then, you can try or edit the example that computes the full belief vector for cutoffs $P1=.1, P2=.5, P3=.9, p1=5, p2=2, p3=1.1, \eta = .3, \xi = 4$.
3. The next part of the file is not super interesting as a standalone, but computes key payoff terms that we'll need to optimize. Scroll past the W 's and the payoff command, to the documentation note "This is the scaled payoff, assuming we start in $n_0=4$ " and hit shift+enter at the end of this paragraph. Then, you can try or edit the example that computes the (scaled) payoff for the example cutoffs in point 2 above.
4. Next part computes the optimal cutoff for $N=2$ memory states. Hit shift+enter after the command Popt2state. $Popt2[\eta, \xi, \lambda]$ finds the optimal cutoff for parameters η, ξ , and $\lambda \equiv \pi/\Pi \leq 1$. This is followed by an example you can try or edit, finding the optimal cutoff for $N=2$ when $\eta = .3, \xi = 4, \lambda \equiv \pi/\Pi = 0.5$.
5. Next part computes the optimal cutoffs for $N=3$ memory states. Hit shift+enter after command Popt3state. This is again followed by an example you can try or edit.
6. And similarly, hit shift+enter after the commands Popt4 (optimal cutoffs for an $N=4$ system), Popt5 (for $N=5$), and Popt7 (for $N=7$).

2 Explanations of Belief Equations

The mathematica file mostly uses the paper notation, with the following poor notation caveat: in the Mathematica file we index states below n_0 from the bottom, and above n_0 from the top, with H meaning “high state” ie above n_0 and L meaning “low state” ie below n_0 . So $(Q1, Q2, Q3) = (QL1, QL2, QL3)$ (low states below initial: 1st from bottom, 2nd from bottom, 3rd from bottom); then $Q4 = Q_{n_0}$ is the initial state belief; then $(Q5, Q6, Q7) = (QH3, QH2, QH1)$ (high states above initial: 3rd from top, 2nd from top, 1st from top).

Everything involves parameters η and ξ , and uses the following functions specified at the start of Appendix C in the paper:

$$\beta(\gamma) \equiv \left(\frac{\xi-1}{\xi+1} \right) \frac{\left(1 - \gamma^{\frac{1}{2}(\xi+1)} \right)}{\left(1 - \gamma^{\frac{1}{2}(\xi-1)} \right)} \quad (1)$$

$$f(R) = \left(\frac{\eta}{1-\eta} \left(R - \frac{\xi-1}{\xi+1} \right) + \frac{2}{\xi+1} (R)^{\frac{1}{2}(\xi+1)} \right) \quad (2)$$

$$g(R, \gamma) = \frac{\frac{2\eta\xi}{(1-\eta)(\xi+1)} (\beta - R) + \left(\frac{\gamma}{R} \right)^{\frac{1}{2}(\xi-1)} \left(\beta - \frac{\xi-1}{\xi+1} \gamma \right) - R^{\frac{1}{2}(\xi+1)} \left(1 - \frac{\xi-1}{\xi+1} \beta \right)}{\left(\frac{\beta^2}{\gamma} - 1 \right) \left(\left(\frac{1}{\gamma} \right)^{\frac{1}{2}(\xi-1)} - 1 \right)} \quad (3)$$

Notation otherwise follows the paper: ρ_i^θ is the chance of being in state i when the final amnesia shock hits, conditional on θ . $Q_i \equiv \rho_i^H / \rho_i^L$ is the belief likelihood ratio in state i (using symmetric prior $\mu = 1$). And $\phi_i \equiv \rho_i^L / \rho_1^L$ and $\Phi_i \equiv \rho_i^H / \rho_N^H$.

- Belief (likelihood ratios) in states below n_0 are computed recursively by $\phi_1 = 1$, and Q_1 solves $f\left(\frac{Q_1}{P_1}\right) = 0$. Then for $2 \leq i < n_0$,

$$\sum_{k \leq i-1} \phi_k \left(\frac{Q_k}{P_i} \right)^{\frac{1}{2}(\xi+1)} + \underbrace{\left(\frac{\sum_{k \leq i-1} \phi_k f\left(\frac{Q_k}{P_i}\right)}{f\left(\frac{Q_i}{P_i}\right)} \right)}_{-\phi_i} g\left(\frac{Q_i}{P_i}, \frac{P_{i-1}}{P_i}\right) = 0 \text{ and } \phi_i = -\frac{\sum_{k \leq i-1} \phi_k f\left(\frac{Q_k}{P_i}\right)}{f\left(\frac{Q_i}{P_i}\right)} \quad (4)$$

- Belief (likelihood ratios) in states above n_0 are computed recursively by $\Phi_N = 1$, and Q_N solves $f\left(\frac{P_{N-1}}{Q_N}\right) = 0$. Then for $n_0 < i \leq N-1$, Q_i solves the first equation below and Φ_i is given by the second:

$$\sum_{k \geq i+1} \frac{\rho_k^H}{\rho_N^H} \left(\frac{P_{i-1}}{Q_k} \right)^{\frac{1}{2}(\xi+1)} + \underbrace{\left(\frac{\sum_{k \geq i+1} \frac{\rho_k^H}{\rho_N^H} f\left(\frac{P_{i-1}}{Q_k}\right)}{f\left(\frac{P_{i-1}}{Q_i}\right)} \right)}_{\equiv -\Phi_i} g\left(\frac{P_{i-1}}{Q_i}, \frac{P_{i-1}}{P_i}\right) = 0 \text{ and } \Phi_i = -\frac{\sum_{k \geq i+1} \Phi_k f\left(\frac{P_{i-1}}{Q_k}\right)}{f\left(\frac{P_{i-1}}{Q_i}\right)} \quad (5)$$

- For initial state belief Q_{n_0} , let \bar{Q}_{n_0-1} be the average belief Q_j in states $j \leq n_0 - 1$, conditional on $\theta = L$; and similarly define \underline{Q}_{n_0+1} as the average belief Q_j in state $j \geq i_0 + 1$, given $\theta = L$. In terms of the ϕ_j, Φ_j, Q_j expressions above,

$$\bar{Q}_{n_0-1} = \frac{\sum_{j \leq n_0-1} \phi_j Q_j}{\sum_{j \leq n_0-1} \phi_j}, \text{ and } \underline{Q}_{n_0+1} = \frac{\sum_{j \geq n_0+1} \Phi_j}{\sum_{j \geq n_0+1} \Phi_j} \quad (6)$$

Now define the following variables, all functions of these averages, where $\gamma_{n_0-1} = P_{n_0-1}/P_{n_0}$:

$$(X_1, X_2, X_3, X_4) = \left(\left(\frac{\underline{Q}_{n_0+1}}{P_{n_0}} - \frac{\xi+1}{\xi-1} \right) \gamma_{n_0-1}^{\frac{1}{2}(\xi-1)}, \frac{\xi+1}{\xi-1} \frac{\underline{Q}_{n_0+1}}{P_{n_0}} - 1, \frac{\xi+1}{\xi-1} - \frac{\bar{Q}_{n_0-1}}{P_{n_0-1}}, \gamma_{n_0-1}^{\frac{1}{2}(\xi+1)} \left(1 - \frac{\xi+1}{\xi-1} \frac{\bar{Q}_{n_0-1}}{P_{n_0-1}} \right) \right) \quad (7)$$

- Then, the initial state belief Q_{i_0} is the root of the following equation:

$$\begin{aligned} & \left[X_1 - \frac{\left(\underline{Q}_{n_0+1} - 1 \right)}{1 - \bar{Q}_{n_0-1}} X_3 \right] \left(\frac{Q_{n_0}}{P_{n_0}} \right)^{\frac{1}{2}(\xi+1)} + \left[X_2 - \frac{\left(\underline{Q}_{n_0+1} - 1 \right)}{1 - \bar{Q}_{n_0-1}} X_4 \right] \left(\frac{P_{n_0-1}}{Q_{n_0}} \right)^{\frac{1}{2}(\xi-1)} \\ & + \frac{\eta}{1-\eta} \frac{\xi-1}{2} \frac{1-Q_{n_0}}{1-\bar{Q}_{n_0-1}} (X_2 X_3 - X_1 X_4) \end{aligned} \quad (8)$$

3 Explanation of Optimization Part

- for the mathematica segment involving the W 's, WH_i is the terminal payoff if the last amnesia shock hits in memory state i , given $\theta = H$; divided by Π . (Comparing to paper notation, $WH_i = w_i^H/\Pi$). And $WL_i \equiv w_i^L/\pi$
- then, each of the optimization sections (for $N=2, N=3, N=4, N=5, N=7$) first writes out the equations that define the relevant post-amnesia payoff gaps. For example if $N = 7$, the indifference FOC's require computing 6 gaps in each true state θ , namely $\Delta_{12}^\theta, \Delta_{23}^\theta, \dots, \Delta_{67}^\theta$, where $\Delta_{i,i+1}^\theta \equiv |\nu_{i+1}^\theta - \nu_i^\theta|$. So we begin by computing these gaps as a function of cutoffs, assuming Bayesian beliefs for these cutoffs. Then, the indifference FOC's that determine optimal thresholds, ie $P_i \Delta_{i,i+1}^H / \Delta_{i,i+1}^L = 1$ for the optimal cutoff (likelihood ratio) P_i , and finally Popt2, Popt3, Popt4, etc computes the optimal cutoffs if $N=2, N=3, N=4$.
 - Note that I specified search ranges for the thresholds; these work for many parameters but may eventually require adjustment

4 Derivation of Continuation Payoff Gaps

In each optimization segment, the mathematica file involves a set of equations labeled eg l3a, h3a, and says these are the equations that define the continuation payoff gaps $\Delta_{i,i+1}^\theta$. These equations were derived as follows: The basic recursion for ν_i^θ is

$$\begin{aligned} \nu_i^\theta &= \eta w_i^\theta + (1-\eta) \sum_{j \leq i-1} \lambda_{i,j}^\theta v_j^\theta + (1-\eta) \sum_{j \geq i+1} \lambda_{i,j}^\theta v_j^\theta + (1-\eta) \left(1 - \sum_{j \leq i-1} \lambda_{i,j}^\theta - \sum_{j \geq i+1} \lambda_{i,j}^\theta \right) v_i^\theta \\ \Leftrightarrow \nu_i^\theta &= \eta w_i^\theta + (1-\eta) \sum_{j \leq i-1} \lambda_{i,j}^\theta (\nu_j^\theta - \nu_i^\theta) + \sum_{j \geq i+1} \lambda_{i,j}^\theta (\nu_j^\theta - \nu_i^\theta) \end{aligned} \quad (9)$$

To make this computationally less tedious, we rewrite using cumulative transition chances and incremental post amnesia payoff gaps. As in the proof of Proposition 1, define (for $i \leq j$) $b_{i,j}^\theta$ as the chance of moving up from i to j or above, and (for $i > j$) $a_{i,j}^\theta$ as the chance of moving i to j or below. With this, (9) rearranges to

$$\frac{\eta}{1-\eta} \nu_i^\theta = \frac{\eta}{1-\eta} w_i^\theta + \sum_{j \geq i+1} b_{i,j}^\theta (\nu_j^\theta - \nu_{j-1}^\theta) - \sum_{j \leq i-1} a_{i,j}^\theta (\nu_{j+1}^\theta - \nu_j^\theta)$$

Taking differences in state $i+1$ vs i , letting $\Delta_{i,i+1}^\theta = |\nu_{i+1}^\theta - \nu_i^\theta|$, this gives

$$\left[\frac{\eta}{1-\eta} + b_{i,i+1}^\theta + a_{i+1,i}^\theta \right] \Delta_{i,i+1}^\theta = \frac{\eta}{1-\eta} (w_{i+1}^\theta - w_i^\theta) + \sum_{j \geq i+2} (b_{i+1,j}^\theta - b_{i,j}^\theta) \Delta_{j-1,j}^\theta + \sum_{j \leq i-1} (a_{i,j}^\theta - a_{i+1,j}^\theta) \Delta_{j,j+1}^\theta \quad (10)$$

Now, recall that $b_{i,j}^H = \frac{\xi+1}{2\xi} \left(\frac{Q_i}{P_{j-1}} \right)^{\frac{1}{2}(\xi-1)}$, $a_{i,j}^H = \frac{\xi-1}{2\xi} \left(\frac{P_j}{Q_i} \right)^{\frac{1}{2}(\xi+1)}$, in state L just interchange $\xi-1$ and $\xi+1$. Thus, we can simplify (10) using the following:

$$\begin{aligned} \sum_{j \geq i+2} (b_{i+1,j}^H - b_{i,j}^H) \Delta_{j-1,j}^H &= \frac{\xi+1}{2\xi} \left(Q_{i+1}^{\frac{1}{2}(\xi-1)} - Q_i^{\frac{1}{2}(\xi-1)} \right) \sum_{j \geq i+2} \frac{\Delta_{j-1,j}^H}{(P_{j-1})^{\frac{1}{2}(\xi-1)}}, \text{ and} \\ \sum_{j \leq i-1} (a_{i,j}^H - a_{i+1,j}^H) \Delta_{j,j+1}^H &= \frac{\xi-1}{2\xi} \left(Q_i^{-\frac{1}{2}(\xi+1)} - Q_{i+1}^{-\frac{1}{2}(\xi+1)} \right) \sum_{j \leq i-1} P_j^{\frac{1}{2}(\xi+1)} \Delta_{j,j+1}^H \end{aligned}$$

Plugging into (10) yields the following recursion:

$$\begin{aligned} &\left[\frac{\eta}{1-\eta} + \frac{\xi+1}{2\xi} \left(\frac{Q_i}{P_i} \right)^{\frac{1}{2}(\xi-1)} + \frac{\xi-1}{2\xi} \left(\frac{P_i}{Q_{i+1}} \right)^{\frac{1}{2}(\xi+1)} \right] \Delta_{i,i+1}^H \\ &= \frac{\eta}{1-\eta} (w_{i+1}^H - w_i^H) + \frac{\xi+1}{2\xi} \left(Q_{i+1}^{\frac{\xi-1}{2}} - Q_i^{\frac{\xi-1}{2}} \right) \sum_{j \geq i+2} \frac{\Delta_{j-1,j}^H}{(P_{j-1})^{\frac{\xi-1}{2}}} + \frac{\xi-1}{2\xi} \left(Q_i^{-\frac{\xi+1}{2}} - Q_{i+1}^{-\frac{\xi+1}{2}} \right) \sum_{j \leq i-1} P_j^{\frac{\xi+1}{2}} \Delta_{j,j+1}^H \end{aligned}$$

And in state L , simply replace $\xi+1$ with $\xi-1$ and vice versa, and change $w_{i+1}^H - w_i^H$ to $w_i^L - w_{i+1}^L$. In all of these equations, the Q_i 's are the Bayesian beliefs as a function of the cutoffs and parameters.