
Mathematica File: Instructions and Explanations

This computes beliefs for up to N=7 states, starting in the middle (n0 = 4), and then optimal cutoffs
including for truncated systems N=2, N=3, N=4, N=5, and finally N=7 (warning: N=7 is slow!!).
Beliefs are in terms of threshold likelihood ratios that you may specify, and parameters η, ξ, assuming
symmetric prior µ = 1. **IMPORTANT**: thresholds below n0 are ordered low-high, as
P1<P2<P3<1; and thresholds above n0 are ordered high-low, as p1>p2>p3>1. You
must have P3<1<p3 if you want to start in n0=4, otherwise there may be no/multiple
solutions. You are welcome to collapse intervals to get a smaller system, this works for up to 3
states below initial and up to 3 above. For example for n0 = 2 and N = 5 (one state below initial
and three above), you need to specify one lower cutoff P3<1 and 3 upper cutoffs p1>p2>p3>1,
then collapse the bottom two intervals via P1=P2=P3.

The optimization section uses action bias λ ≡ π/Π and assumes (via the choice of n0) that
this is at most 1. It gets exponentially slower as the # memory states N rises, so I have explicitly
programmed in smaller systems: first N = 2 (this is instant), then N = 3 (about 5 seconds), N = 4
(30 seconds), N = 5 (2 minutes), and N = 7 (8 minutes). I skipped N=6.

1 How to Use Mathematica File

I’ve bunched quite a few command lines together, but you still need to enter command lines at key
spots. Look for large gaps where you need to hit shift+enter to execute the commands:

1. The first part of the file computes beliefs (likelihood ratios) outside n0 = 4. Hit shift+enter
at the end (after the documentation note following command QHavg3)

2. The next part of the file computes the belief (likelihood ratio) in initial state n0 = 4, then
computes the ρθ vectors, and finally computes the full vector (Q1, Q2, .., Q6, Q7) of belief
likelihood ratios for N=7 states, given your specified cutoffs and parameters η, ξ. Look for the
documentation note "this calculates the full Q vector starting in 4" and hit shift+enter after
this. Then, you can try or edit the example that computes the full belief vector for cutoffs
P1=.1,P2=.5,P3=.9, p1=5, p2=2, p3=1.1, η = .3, ξ = 4.

3. The next part of the file is not super interesting as a standalone, but computes key payoff
terms that we’ll need to optimize. Scroll past the W’s and the payoff command, to the
documentation note “This is the scaled payoff, assuming we start in n0=4" and hit shift+enter
at the end of this paragraph. Then, you can try or edit the example that computes the (scaled)
payoff for the example cutoffs in point 2 above.

4. Next part computes the optimal cutoff for N=2 memory states. Hit shift+enter after the
command Popt2state. Popt2[η, ξ, λ] finds the optimal cutoff for parameters η, ξ, and λ ≡
π/Π ≤ 1. This is followed by an example you can try or edit, finding the optimal cutoff for
N=2 when η = .3, ξ = 4, λ ≡ π/Π = 0.5.

5. Next part computes the optimal cutoffs for N=3 memory states. Hit shift+enter after com-
mand Popt3state. This is again followed by an example you can try or edit.

6. And similarly, hit shift+enter after the commands Popt4 (optimal cutoffs for an N=4 system),
Popt5 (for N=5), and Popt7 (for N=7).
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2 Explanations of Belief Equations

The mathematica file mostly uses the paper notation, with the following poor notation caveat: in
the Mathematica file we index states below n0 from the bottom, and above n0 from the top, with H
meaning “high state”ie above n0 and L meaning “low state”ie below n0. So (Q1,Q2,Q3)=(QL1,QL2,QL3)
(low states below initial: 1st from bottom, 2nd from bottom, 3rd from bottom); then Q4 = Qn0
is the initial state belief; then (Q5,Q6,Q7)=(QH3,QH2,QH1) (high states above initial: 3rd from
top, 2nd from top, 1st from top).

Everything involves parameters η and ξ, and uses the following functions specified at the start
of Appendix C in the paper:
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Notation otherwise follows the paper: ρθi is the chance of being in state i when the final amnesia
shock hits, conditional on θ. Qi ≡ ρHi /ρ

L
i is the belief likelihood ratio in state i (using symmetric

prior µ = 1). And φi ≡ ρLi /ρL1 and Φi ≡ ρHi /ρHN .

• Belief (likelihood ratios) in states below n0 are computed recursively by φ1 = 1, and Q1 solves
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• Belief (likelihood ratios) in states above n0 are computed recursively by ΦN = 1, and QN
solves f
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= 0. Then for n0 < i ≤ N − 1, Qi solves the first equation below and Φi is
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• For initial state belief Qn0 , let Qn0−1 be the average belief Qj in states j ≤ n0−1, conditional
on θ = L; and similarly define Q

n0+1
as the average belief Qj in state j ≥ i0 + 1, given θ = L.

In terms of the φj ,Φj , Qj expressions above,

Qn0−1 =

∑
j≤n0−1 φjQj∑
j≤n0−1 φj

, and Q
n0+1

=

∑
j≥n0+1 Φj∑
j≥n0+1

Φj
Qj

(6)

Now define the following variables, all functions of these averages, where γn0−1 = Pn0−1/Pn0 :

(X1, X2, X3, X4) =

((
Q
n0+1

Pn0
− ξ + 1

ξ − 1

)
γ
1
2

(ξ−1)

n0−1 ,
ξ + 1

ξ − 1

Q
n0+1

Pn0
− 1,

ξ + 1

ξ − 1
−
Qn0−1

Pn0−1
, γ

1
2

(ξ+1)

n0−1

(
1− ξ + 1

ξ − 1

Qn0−1

Pn0−1

))
(7)

• Then, the initial state belief Qi0 is the root of the following equation:X1 −
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3 Explanation of Optimization Part

• for the mathematica segment involving the W’s, WHi is the terminal payoff if the last
amnesia shock hits in memory state i, given θ = H; divided by Π. (Comparing to paper
notation, WHi = wHi /Π). And WLi ≡ wLi /π

• then, each of the optimization sections (for N=2, N=3, N=4, N=5, N=7) first writes out
the equations that define the relevant post-amnesia payoff gaps. For example if N = 7, the
indifference FOC’s require computing 6 gaps in each true state θ, namely ∆θ

12,∆
θ
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θ
67,

where ∆θ
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∣∣ . So we begin by computing these gaps as a function of cutoffs,

assuming Bayesian beliefs for these cutoffs. Then, the indifference FOC’s that determine
optimal thresholds, ie Pi∆H

i,i+1/∆
L
i,i+1 = 1 for the optimal cutoff (likelihood ratio) Pi, and

finally Popt2, Popt3, Popt4, etc computes the optimal cutoffs if N=2,N=3,N=4.

—Note that I specified search ranges for the thresholds; these work for many parameters
but may eventually require adjustment

4 Derivation of Continuation PayoffGaps

In each optimization segment, the mathematica file involves a set of equations labeled eg l3a, h3a,
and says these are the equations that define the contination payoff gaps ∆θ
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were derived as follows: The basic recursion for νθi is
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To make this computationally less tedious, we rewrite using cumulative transition chances and
incremental post amnesia payoff gaps. As in the proof of Proposition 1, define (for i ≤ j) bθi,j as
the chance of moving up from i to j or above, and (for i > j) aθi,j as the chance of moving i to j or
below. With this, (9) rearranges to
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Plugging into (10) yields the following recursion:[
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And in state L, simply replace ξ+1 with ξ−1 and vice versa, and change wHi+1−wHi to wLi −wLi+1. In
all of these equations, the Qi’s are the Bayesian beliefs as a function of the cutoffs and parameters.
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